Главная Учителю ОГЭ-9 ЕГЭ-11  

Основное меню

 
 

Контакты

 
krasakova@bk.ru
 

 
 

Главная / 8 класс / Конспект

Перевод чисел в позиционных системах счисления

В древние времена, когда люди начали считать, появилась потребность в записи чисел.

Количество предметов изображалось нанесением черточек или засечек на какой-либо твёрдой поверхности: камне, дереве, глине. Позже значки стали группировать по три или по пять. Такая система записи чисел называется единичной (унарной), так как любое число в ней образуется путем повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня (счетные палочки для обучения счету; полоски, нашитые на рукаве, означают на каком курсе учится курсант военного училища).

Для записи информации о количестве объектов используются числа. Числа заключают в себе количественную информацию. Числа записываются с использованием особых знаковых систем, которые называются системами счисления.

Система счисления (СС) - способ записи чисел с помощью некоторого алфавита, символы которого называют цифрами.

Алфавит – это набор цифр, используемый в записи числа в данной СС.

Различают СС позиционные и непозиционные.
Позиционные - количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра. (В числе 252 – первая двойка означает количество сотен, последняя – количество единиц)
Непозиционные - количественное значение цифры числа не зависит от того, в каком месте (позиции или разряде) записана та или иная цифра.
Пример позиционной системы счисления — арабская (современная десятичная), непозиционной — римская.

К непозиционным системам исчисления можно отнести системы счисления древности: старославянскую, древнеегипетскую, китайскую, ацтеков, майя …

Недостатки: Очень сложно выполнять математические расчеты и  необходимо большого числа различных знаков для записи чисел, особенно больших

Приведем пример самой распространенной из непозиционных систем счисления является римская. В качестве цифр используются следующие латинские буквы:

I – 1, V – 5, X – 10, L – 50, C – 100, D – 500, M – 1000.
Величина числа определяется как сумма или разность цифр в числе.
444=400+40+4=(D-С)+(L-X)+(V-I)=CDXLIV
Первая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричная, т.е. в ней использовалось шестьдесят цифр. (До сих пор считаем, час - 60 минут, минута - 60 секунд, окружность - 360о).
В позиционных СС количественное значение цифры зависит от ее позиции в числе. Позиция цифры в числе называется разрядом. Разряды возрастают справа налево (единицы, десятки, сотни и т.д.).
Основанием СС - количество различных символов (цифр), используемых для изображения числа в позиционных системах счисления, называется .  (Например, 32245 число записано в пятеричной СС, читается "три-два-два-четыре в пятеричной СС")
Например, в десятичной системе счисления, которой мы пользуемся, алфавит состоит из  десяти цифр {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, соответственно основание равно 10.
Четверичная СС. Основание - 4. Алфавит - 0, 1, 2, 3.
Семеричная СС. Основание - 7. Алфавит - 0, 1, 2, 3, 4, 5, 6.
Шестнадцатеричная СС. Основание - 16. Алфавит - 0 ... 9, A, B, C, D, E, F. (Например 2D616 "два-д-шесть в шестнадцатеричной СС, цифре А соотв. 10 в десятичной СС, B - 11, C - 12, D - 13, E - 14, F - 15)
В современной информатике используются в основном двоичная, восьмеричная, шестнадцатеричная СС. Двоичная система счисления используется для кодирования дискретного сигнала в вычислительной технике, поскольку двоичный сигнал проще представлять на аппаратном уровне. В этой системе счисления для представления числа применяются два знака – 0 и 1.
 
 
Перевод чисел из любой позиционной СС в десятичную

Мы пользуемся свернутой формой записи числа, но мы знаем, что, например, число 352 = 3*100+5*10+2.

В развернутой форме производится умножение цифр числа на степень основания, т.е. 352=3*102+5*101+2*100.
Т.о. любое число в позиционной СС можно записать в развернутой форме и перевести в десятичную СС.
В памяти компьютера числа представлены в двоичной СС, поэтому в информатике часто возникает необходимость перевода чисел из двоичной системы в десятичную и обратно. Приведем пример перевода двоичного числа:
Пример 1:
5 4 3 2 1 0
1101012 = 1*25 + 1*24 + 0*23 + 1*22 + 0*21 + 1*20 = 32 + 16 + 0 + 4 + 0 + 1 = 5310.
Двоичное число с дробной частью:
Пример 2:
3210-1-2
1001,112 = 1*23 + 0*22 + 0*21 + 1*20 + 1*2-1 + 1*2-2 = 8 + 1 + 1/2 + 1/4 = 9+ 0,75 = 9,7510.
По такому же принципу можно переводить числа в десятичную СС из других позиционных СС.
Пример 3:
32114 =  3*43 + 2*42 + 1*41 + 1*10 = 3*64 + 2*16 + 1*4 + 1*1 = 192 + 32 + 4 + 1 = 22910
Пример 4:
2148 = 4 * 80 + 1 * 81 + 2 * 82 = 4 + 8 + 128 = 14010
Пример 5:
2 1 0
2AF16 =  2*162 + 10*161 + 15*160 = 2*256 + 10*16 + 15*1 = 512 + 160 + 15 = 68710
В записи числа в шестнадцатеричной системе счисления А=10 и F=15.
Пример 6:

1D316 = 3 * 160 + 13 * 161 + 1* 162 = 3 + 208 + 256 = 46710

В записи числа в шестнадцатеричной системе счисления D=13.
 
 
Перевод чисел из десятичной СС в любую позиционную систему счисления.
Существует алгоритм перевода целого десятичного числа в двоичное:
  1. Последовательно выполнять деление исходного целого десятичного числа и получаемых целых частных на основание СС (на 2) до тех пор, пока частное от деления не окажется меньше основания СС (<2).
  2. Записать полученные остатки в обратной последовательности, начиная с последнего результата.
2510 = 110012
Для перевода дробных десятичных чисел существует тоже алгоритм. Для этого необходимо  отдельно перевести целую и дробную часть.
26, 7510 = 26 + 0,75 = 11010+0,11 = 11010,112
Целую часть переведем как указано выше, а дробную часть переведем по следующему алгоритму:
  1. последовательно умножать исходную и получаемые дробные части на основание системы до тех пор, пока не получим нулевую дробную часть.
  2. Записать полученные целые части произведений в прямой последовательности.
  0, 75   *2
Ô 1, 5   *2
  1, 0  

Поучаем 0,7510 = 0,112

Используя данный алгоритм можно перевести десятичное число в позиционную систему с любым основанием.

18010 = B416

 
Результат 158 79 39 19 9 4 2 1
Остаток 0 1 1 1 1 0 0 1
15810 = 100111102
 
Результат 467 58 7
Остаток 3 2 7
46710 = 7238
 
 

Рейтинг@Mail.ru

Дистанционное обучение

5 класс
6 класс
7 класс
8 класс
9 класс
10 класс
11 класс
 

 

Единая коллекция цифровых образовательных ресурсов

Единое окно доступа к образовательным ресурсам

 

Copyright © 2011 - Красакова О.Н. E-mail: krasakova@bk.ru